109 research outputs found

    The ISO Galactic Metallicity Gradient Revisited

    Get PDF
    Two independent groups (Giveon et al. 2002; Martin-Hernandez et al. 2002) have recently investigated the Galactic metallicity gradient as probed by ISO observations of mid-infrared emission lines from HII regions. We show that the different gradients inferred by the two groups are due to differing source selection and differing extinction corrections. We show that both data sets in fact provide consistent results if identical assumptions are made in the analysis. We present a consistent set of gradients in which we account for extinction and variation in electron temperature across the disk.Comment: Accepted for publication in Astronomy & Astrophysic

    NGC 6302: high-ionization permitted lines. Applying X-SSN synthesis to VLT-UVES spectra

    Full text link
    A preliminary VLT-UVES spectrum of NGC 6302 (Casassus et al. 2002, MN), which hosts one of the hottest PN nuclei known (Teff ~ 220000 K; Wright et al. 2011, MN), has been recently analysed by means of X-SSN, a spectrum synthesis code for nebulae (Morisset and P\'equignot). Permitted recombination lines from highly-ionized species are detected/identified for the first time in a PN, and some of them probably for the first time in (Astro)Physics. The need for a homogeneous, high signal-to-noise UVES spectrum for NGC 6302 is advocated.Comment: Poster contribution (2 pages, 1 figure) to IAU Symposium 283: "Planetary Nebulae: An Eye to the Future" held in Puerto de la Cruz, Tenerife, Spain in July 25th-29th 201

    Ionization Correction Factors for Planetary Nebulae: I- Using optical spectra

    Full text link
    We compute a large grid of photoionization models that covers a wide range of physical parameters and is representative of most of the observed PNe. Using this grid, we derive new formulae for the ionization correction factors (ICFs) of He, O, N, Ne, S, Ar, Cl, and C. Analytical expressions to estimate the uncertainties arising from our ICFs are also provided. This should be useful since these uncertainties are usually not considered when estimating the error bars in element abundances. Our ICFs are valid over a variety of assumptions such as the input metallicities, the spectral energy distribution of the ionizing source, the gas distribution, or the presence of dust grains. Besides, the ICFs are adequate both for large aperture observations and for pencil-beam observations in the central zones of the nebulae. We test our ICFs on a large sample of observed PNe that extends as far as possible in ionization, central star temperature, and metallicity, by checking that the Ne/O, S/O, Ar/O, and Cl/O ratios show no trend with the degree of ionization. Our ICFs lead to significant differences in the derived abundance ratios as compared with previous determinations, especially for N/O, Ne/O, and Ar/O.Comment: 19 pages, 22 figures. Accepted for publication in MNRA

    PyNeb: a new tool for analyzing emission lines. I. Code description and validation of results

    Full text link
    Analysis of emission lines in gaseous nebulae yields direct measures of physical conditions and chemical abundances and is the cornerstone of nebular astrophysics. Although the physical problem is conceptually simple, its practical complexity can be overwhelming since the amount of data to be analyzed steadily increases; furthermore, results depend crucially on the input atomic data, whose determination also improves each year. To address these challenges we created PyNeb, an innovative code for analyzing emission lines. PyNeb computes physical conditions and ionic and elemental abundances, and produces both theoretical and observational diagnostic plots. It is designed to be portable, modular, and largely customizable in aspects such as the atomic data used, the format of the observational data to be analyzed, and the graphical output. It gives full access to the intermediate quantities of the calculation, making it possible to write scripts tailored to the specific type of analysis one wants to carry out. In the case of collisionally excited lines, PyNeb works by solving the equilibrium equations for an n-level atom; in the case of recombination lines, it works by interpolation in emissivity tables. The code offers a choice of extinction laws and ionization correction factors, which can be complemented by user-provided recipes. It is entirely written in the python programming language and uses standard python libraries. It is fully vectorized, making it apt for analyzing huge amounts of data. The code is stable and has been benchmarked against IRAF/NEBULAR. It is public, fully documented, and has already been satisfactorily used in a number of published papers.Comment: 17 pages, 12 figures. Accepted for publication in Astronomy & Astrophysics. Typos and reference list corrected in this versio

    Modeling the dust emission from PN IC418

    Full text link
    We construct a detailed model for the IR dust emission from the PN IC 418. We succeed to reproduce the emission from 2 to 200μ\mum. We can determine the amount of emitting dust as well as its composition, and compare to the depletion of elements determined for the photoionized region.Comment: Poster contribution (2 pages, 1 figure) to IAU Symposium 283: "Planetary Nebulae: An Eye to the Future" held in Puerto de la Cruz, Tenerife, Spain in July 25th-29th 2011. Few typos correcte

    Shape: A 3D Modeling Tool for Astrophysics

    Full text link
    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a-priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.Comment: 13 pages, 11 figures, accepted for publication in the "IEEE Transactions on Visualization and Computer Graphics

    Oxygen enrichment in carbon-rich planetary nebulae

    Full text link
    We study the relation between the chemical composition and the type of dust present in a group of 20 Galactic planetary nebulae (PNe) that have high quality optical and infrared spectra. The optical spectra are used, together with the best available ionization correction factors, to calculate the abundances of Ar, C, Cl, He, N, Ne, and O relative to H. The infrared spectra are used to classify the PNe in two groups depending on whether the observed dust features are representative of oxygen-rich or carbon-rich environments. The sample contains one object from the halo, eight from the bulge, and eleven from the local disc. We compare their chemical abundances with nucleosynthesis model predictions and with the ones obtained in seven Galactic H II regions of the solar neighbourhood. We find evidence of O enrichment (by \sim 0.3 dex) in all but one of the PNe with carbon-rich dust (CRD). Our analysis shows that Ar, and especially Cl, are the best metallicity indicators of the progenitors of PNe. There is a tight correlation between the abundances of Ar and Cl in all the objects, in agreement with a lockstep evolution of both elements. The range of metallicities implied by the Cl abundances covers one order of magnitude and we find significant differences in the initial masses and metallicities of the PNe with CRD and oxygen-rich dust (ORD). The PNe with CRD tend to have intermediate masses and low metallicities, whereas most of the PNe with ORD show higher enrichments in N and He, suggesting that they had high-mass progenitors.Comment: Accepted for publication in MNRAS. 14 pages, 8 figures, 5 table

    Abundances and ADFs in PNe with WC central stars

    Full text link
    We present preliminary results obtained from the analysis of very deep echelle spectra of a dozen planetary nebulae with [WC] or weak emission lines (wels) central stars. The computed abundance discrepancy factors (ADFs) are moderate, with values lower than 4. In principle, no evidence of the H-poor metal enriched inclusions proposed by Liu et al. (2000) have been found. However, a detailed analysis of the data is in progress.Comment: Poster contribution (2 pages, 1 figure) to IAU Symposium 283: "Planetary Nebulae: An Eye to the Future" held in Puerto de la Cruz, Tenerife, Spain in July 25th-29th 201
    corecore